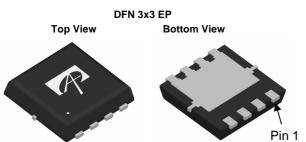


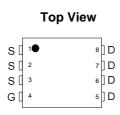
AON7408 30V N-Channel MOSFET

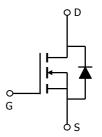
General Description

The AON7408 uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. This device is suitable for use in general purpose applications.

Features


 $V_{DS}(V) = 30V$


 $I_D = 23A$ $(V_{GS} = 10V)$


 $R_{DS(ON)}$ < 22m Ω (V_{GS} = 10V)

 $R_{DS(ON)} < 34m\Omega$ ($V_{GS} = 4.5V$)

100% UIS Tested!

Absolute Maximum Ratings T _A =25℃ unless otherwise noted					
Parameter	Symbol				
Duein Occurs Valle as	\ /				

Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V_{DS}	30	V
Gate-Source Voltage		V_{GS}	±20	V
Continuous Drain	T _C =25℃		23	
Current ^B	T _C =100℃	I_D	15	
Pulsed Drain Current ^C		I_{DM}	50	A
Continuous Drain	T _A =25℃		9.6	
Current ^A	T _A =70℃	I _{DSM}	7.7	
	T _C =25℃	В	20	
Power Dissipation ^B	T _C =100℃	-P _D	8.3	W
	T _A =25℃	В	3.1	VV
Power Dissipation ^A	T _A =70℃	P _{DSM}	2]
Junction and Storage	Temperature Range	T_J, T_{STG}	-55 to 150	ς.

Thermal Characteristics					
Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient A	t ≤ 10s	В	25	40	°C/W
Maximum Junction-to-Ambient A	Steady-State	$-$ R _{θJA}	62	75	°C/W
Maximum Junction-to-Case B	Steady-State	$R_{\theta JC}$	5	6	.c\M

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	$I_D = 250 \mu A, V_{GS} = 0 V$				V
I _{DSS} Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V				1	μA	
DSS	I _{DSS} Zero Gate Voltage Drain Current		T _J =55℃			5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1	1.6	3	V
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V		50			Α
		V_{GS} =10V, I_D =9A			18	22	
R _{DS(ON)}	R _{DS(ON)} Static Drain-Source On-Resistance		T _J =125℃		26	32	$m\Omega$
	V_{GS} =4.5V, I_D =5A	V _{GS} =4.5V, I _D =5A		27	34		
g FS	Forward Transconductance	$V_{DS}=5V$, $I_{D}=9A$	V_{DS} =5V, I_{D} =9A		24		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V	I _S =1A,V _{GS} =0V		0.75	1	V
I _S	Maximum Body-Diode Continuous Cur	aximum Body-Diode Continuous Current				1.7	Α
DYNAMIC	CPARAMETERS						
C _{iss}	Input Capacitance				621	820	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz V_{GS} =0V, V_{DS} =0V, f=1MHz			118		pF
C_{rss}	Reverse Transfer Capacitance				85		pF
R_g	Gate resistance				0.8	1.5	Ω
SWITCHI	NG PARAMETERS						
Q_g	Total Gate Charge				6	8	nC
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =15V,	I _D =9A		2.1		nC
Q_{gd}	Gate Drain Charge		1		3		nC
t _{D(on)}	Turn-On DelayTime				4.5		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =15V,	V_{GS} =10V, V_{DS} =15V, R_L =1.7 Ω ,		3.1		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$			15.1		ns
t _f	Turn-Off Fall Time				2.7		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =9A, dI/dt=100A/μs			15.5	20	ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =9A, dI/dt=100A/μs	I _F =9A, dI/dt=100A/μs		7.1		nC
	e of Rola is measured with the device in a still air		The newer disci	nation D	and au	rrant ratina	

A: The value of $R_{\theta JA}$ is measured with the device in a still air environment with T_A =25°C. The power dissipation P_{DSM} and current rating I_{DSM} are based on $T_{J(MAX)}$ =150°C, using t \leq 10s junction-to-ambient thermal resistance.

Rev3: Feb-2010

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse ratin g.

G. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25℃.

H. The maximum current rating is limited by bond-wires.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

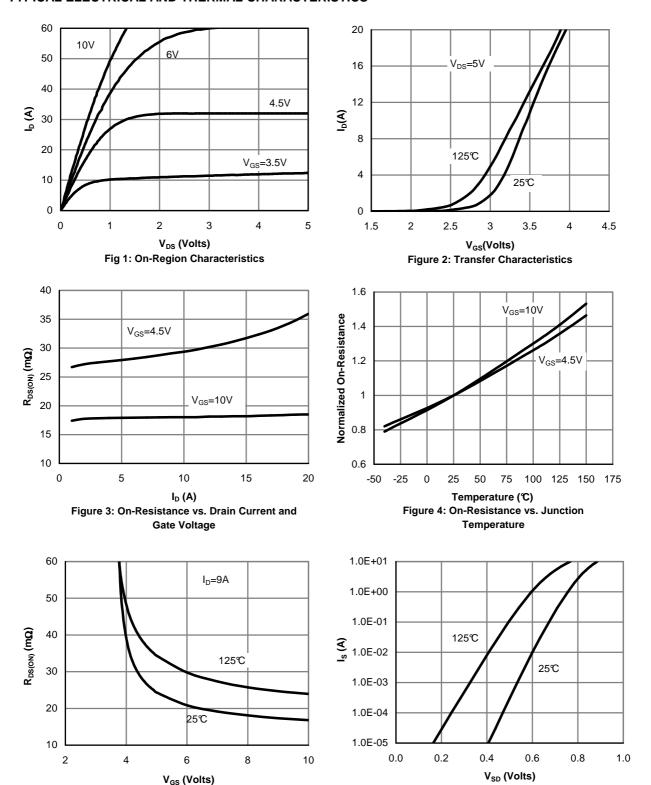


Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

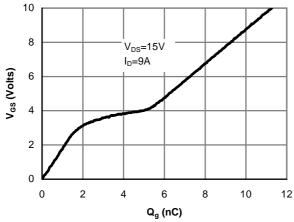


Figure 7: Gate-Charge Characteristics

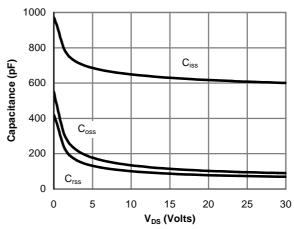


Figure 8: Capacitance Characteristics

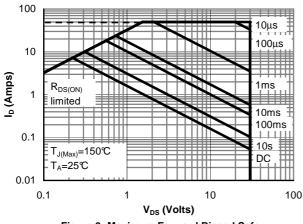


Figure 9: Maximum Forward Biased Safe Operating Area (Note H)

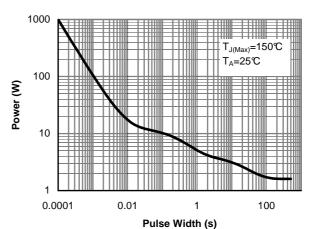


Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note H)

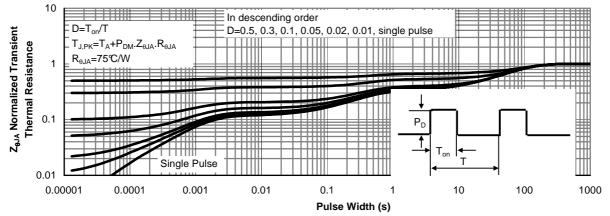


Figure 11: Normalized Maximum Transient Thermal Impedance (Note H)