

SiRF Star III LowPower GPS Module

User's Manual Ver 1.04

Contents

1.	INTRODUCTION						
	1.1 OVERVIEW						
	1.2 MAIN FEATURES						
2.	TECHNICAL SPECIFICATIONS						
	2.1 ELECTRICAL CHARACTERISTICS						
3.	APPLICATIONS						
4.	MECHANICAL DIMENSIONS						
	4.1 MG-S02						
5.	BOARD CONNECTIONS	6					
6.	Electrical Specification 8						
7.	Operating Conditions	8					
8.	Application Schematic	9					

1. Introduction

1.1. Overview

Modulestek GPS module **MG-S02** is a high sensitivity, compact size, plug & play also the Low Power consumption GPS module board designed for a broad spectrum of OEM system applications. This product is based on the SiRF Star III technology and it will track up to 20 satellites at a time while providing fast time-to-first-fix. Its far reaching capability meets the sensitivity & accuracy requirements of car navigation as well as other location-based applications, such as AVL system. Handheld navigator, PDAs, Wrist Watches, Personal Locators, Toll collection, Fleet Management, pocket PC, or any battery operated navigation system.

The **MG-S02** design utilizes the latest surface mount technology and high level circuit integration to achieve superior performance while minimizing dimension and power consumption. This hardware capability combined with software intelligence makes the board easy to be integrated and used in all kinds of navigation applications or products.

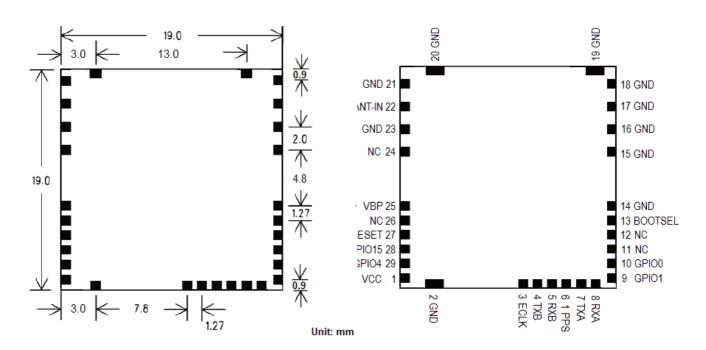
1.2. Main Feature

- Built-in high performance SiRF Star III Low power chipset.
- Current consumption 40mA
- 20 channels parallel.
- Average Cold Start in 42 seconds.
- -159 dBm sensitivity in tracking mode
- NMEA0183 compliant protocol
- Extreme fast TTFF at low signal level

2. Technical Specifications

2.1. Electrical Characteristics

	General	Accuracy			
GPS Chip	SiRF Star III	Position			
		10 meters, 2D RMS			
Frequency	L1, 1575.42MHz	7 meters 2D RMS, WAAS corrected			
		1-5 meters, DGPS corrected			
C/A Code	1.023MHz chip rate	Velocity	0.1 m/sec		
Channels	20 CH	Time	1ms synchronized to GPS time		
		Datum WGS-84			
	Sensitivity	Dynamic Conditions			
To – 159Bm Trackin	g, Superior Urban Canyon Performance	Altitude	<18,000 m (60,000 feet)		
l	Acquisition Rate	Velocity	<515 m/sec (1,000 knots)		
Cold Start	42 sec, average	Acceleration	<4g		
Warm Start	38 sec, average	Motional Jerk	<20 m/sec		
Hot Start	1 sec, average	GPS Protocol			
Reacquisition 0.1sec, average		Default: NMEA-0183,			
Accuracy Snap start 2 sec, average		GGA(1), GSA(1), GSV(1), RMC(1),			
	Power	Band rate 9600 bps,			
Operation Power 3.3VDC+10%		Data bit : 8, stop bit : 1			
Current Consumption 40mW		Device Size			
Backup Power 3.3V Environmental		19.0 (L) x 19.0 (W) x 2.6 (H) mm			
Operating Temperature	e - 10 °C to + 60 °C				
Relative Humidity	5% to 95% non-condensing	Accessories			


3. Applications

MG-S02 module board receiver is a high performance, ultra low power consumption, plug &play product. These applications are as follow.

- Car Navigation
- Wrist Watch
- Solar Operated Device
- Marine Navigation
- Fleet Management
- AVL and Location-Based Services
- Radar detector with GPS function
- Hand-Held Device for Personal Positioning and Navigation
- Ideal for PAD, Pocket PC and Other Computing Devices at GPS Application

4. Mechanical Dimensions

4.1. MG-S02

5. Board connections

PIN	Signal name	I/O	Description	Note		
1	VCC	Ι	Supply Voltage (3.0V~3.6V)			
2	GND					
3	ECLK	Ι	External CMOS clock source			
4	ТХВ	0	Serial outputs for channel B			
5	RXB	Ι	Serial inputs for channel B			
6	1 PPS	I/O	One pulse per second			
7	ТХА	0	Serial outputs for channel A			
8	RXA	Ι	Serial inputs for channel A			
9	GPIO1	I/O	LED Status	Leave unconnected if not used		
10	GPIO0	I/O		Leave unconnected if not used		
11	NC					
12	NC					
13	BOOTSEL	Ι	Module boots into special debug	Leave unconnected if not used		
			mode if VCC during reset			
14	GND					
15	GND					
16	GND					
17	GND					
18	GND					
19	GND					
20	GND					
21	GND					
22	ANT-IN	Ι	GPS signal from antenna	50Ω (1.57542 GHz)		
23	GND					
24	NC					
25	VBP	Ι	Backup Voltage supply for RTC and SRAM	Leave unconnected if not used		
26	NC					
27	RESET	I/O	Active low reset	Leave unconnected if not used		
28	GPIO15	I/O		Leave unconnected if not used		
29	GPIO4	I/O	GPS Status	GPS fixed: Clock("H" 500ms;		
				"L" 500ms)		
				GPS unfixed: "H"		

<u>Key Modules For Your Success</u>

RESET

An external reset is initiated by pulling RESET low for at least 1 μ s. If not used, RESET can be left unconnected since there is an internal 10k pull-up resistor. RESET is also used in Push-to-Fix mode in order to wake up the unit and request a position fix. Minimum pulse width is 1 μ s.

BOOTSEL

The boot signal BOOTSEL forces special debug mode when restarted with a reset signal or power-up. If not used, BOOTSEL can be left unconnected since there is an internal 100k pull-down resistor.

RF IN

The line on the PCB from the antenna (or antenna connector) has to be a controlled impedance line (Microstrip at 50Ω).

VBAT

This is the battery backup supply that powers the SRAM and RTC when power is removed. Without an external backup battery or on board battery, engine board will execute a cold start after every turn on. To achieve the faster start-up offered by a hot or warm start, either a backup battery must be connected or battery installed on board.

TIMEMARK

This pin provides one pulse per second output from the engine board which is synchronized to within one microsecond of GPS time. The output is TTL negative level signal with negative logic.

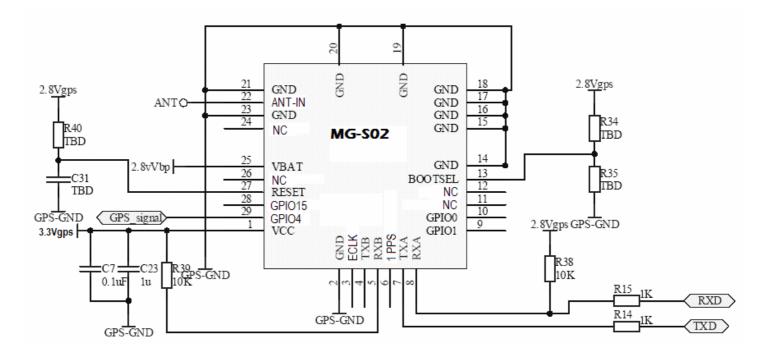
<u>Key Modules For Your Success</u>

6. Electrical Specification

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Power supply voltage(VCC,VCC-RF)		3.6	V
Input/Output Pin voltage		5.25	V
RTC Voltage		2.0	V
Latch-up Current		±200	mA
Storage temperature	-65	150	°C

Warning – Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond "Operating conditions" is not recommended and extended exposure beyond the "Operating condition" may affect device reliability. This module is not protected against over voltage, reversed voltage or short current of RF_IN port.


7. Operating Conditions

(Test Temperature: 25°C)

Parameter	Condition	Min	Тур	Max	Unit
Operating supply voltage	VCC	3.0	3.3	3.6	V
Operating supply ripple voltage				50	mV
Backup battery input voltage	V-BAT	1.9		3.0	V
I/O input low level				0.3x VCC	V
I/O input high level		0.7x VCC			V
I/O output high level	Loh=2mA	2.4	2.8		V
I/O output low level	Lol=2mA		0.2	0.4	V
Antenna input voltage	V_ANT	2.7	2.8	3.0	V
Sustained supply current	VCC=3.3V		40		mA
Peak supply current	VCC=3.3V		47		mA
Operating temperature	VCC=3.3V	-40	25	+85	С°

8. Application Schematic

Contact Office:

Modulestek Inc.

No.208 Zhengkang 1st St., Taoyuan City, Taoyuan County 330, Taiwan Tel : +886-3-3311143 Fax: +886-3-3316751 Email: <u>sales@modulestek.com</u> Web: <u>www.modulestek.com</u>